首页 | 本学科首页   官方微博 | 高级检索  
     

融合多维时空特征的交通流量预测模型
引用本文:宋瑞蓉,王斌君,仝鑫,刘文懋. 融合多维时空特征的交通流量预测模型[J]. 科学技术与工程, 2021, 21(31): 13439-13446
作者姓名:宋瑞蓉  王斌君  仝鑫  刘文懋
作者单位:中国人民公安大学信息网络安全学院,北京100038;绿盟科技集团股份有限公司,北京100089
基金项目:国家社会科学基金重点项目(20AZD114);公安部科技强警基础工作专项(2018GABJC03)(公安部科技强警基础工作专项项目);CCF-绿盟科技“鲲鹏”科研基金(CCF-NSFOCUS 2020011)。
摘    要:
为了精准预测交通流量,充分提取交通流中复杂的线性和非线性特征及其依赖关系,提出了融合多维时空特征的CLABEK模型。其中,由Conv-LSTM、BiLSTM和Dense神经网络分别提取时空特征、周期特征和额外特征(节假日、天气状况以及温度等),并通过将上述模型融合从而全面获取交通流的非线性特征;由卡尔曼滤波提取交通流的线性特征。在公开数据集上的对比实验证明,CLABEK模型在短期交通流预测任务上表现出最好的预测效果。

关 键 词:交通流量  时空融合  神经网络  卡尔曼滤波
收稿时间:2021-02-22
修稿时间:2021-08-25

Research on Traffic Flow Forecasting Model Based on Multi Dimensional Spatial and Temporal Characteristics
Song Ruirong,Wang Binjun,Tong xin,Liu Wenmao. Research on Traffic Flow Forecasting Model Based on Multi Dimensional Spatial and Temporal Characteristics[J]. Science Technology and Engineering, 2021, 21(31): 13439-13446
Authors:Song Ruirong  Wang Binjun  Tong xin  Liu Wenmao
Affiliation:People''s Public Security University of China; Nsfocus Information Technology Co .Ltd .
Abstract:
In order to accurately predict the traffic flow and fully extract the complex linear and nonlinear features and their dependence in the traffic flow, a CLABEK model integrating multi-dimensional spatial-temporal features is proposed. Among them, the temporal and spatial features, periodic features and additional features (holidays, weather conditions and temperature) are extracted by Conv-LSTM, BiLSTM and Dense neural networks respectively, and the nonlinear features of traffic flow are comprehensively obtained by combining the above models; then the linear features of traffic flow are extracted by Kalman Filtering. The comparative experiments on public data sets show that the CLABEK model performs the best in short-term traffic flow prediction task.
Keywords:traffic flow   integration of time and space   neural network   kalman filtering
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号