首页 | 本学科首页   官方微博 | 高级检索  
     

对接双材平面中圆弧裂纹问题的数值方法
引用本文:杜云海,刘雯雯,徐轶洋. 对接双材平面中圆弧裂纹问题的数值方法[J]. 郑州大学学报(自然科学版), 2014, 0(1): 98-102
作者姓名:杜云海  刘雯雯  徐轶洋
作者单位:郑州大学力学与工程科学学院,河南郑州450001
基金项目:河南省教育厅自然科学基金资助项目,编号2009B130004.
摘    要:基于超奇异积分方程法的基本原理,以裂纹弧长坐标为基本变量,以裂纹岸位移间断为基本未知函数,得出双材料平面圆弧裂纹问题的超奇异积分方程组,并通过适当的变量与函数代换建立了相应的数值算法,最终将问题转变为对一个线性方程组的求解.针对圆弧裂纹的计算表明,由于裂纹变曲一般产生应力强度因子减小的良性影响,而双材料界面对附近裂纹应力强度因子的影响则在切变模量比G2/G1<1时变大,而在G2/G1>1时则变小.

关 键 词:圆弧裂纹  双材料  数值方法  应力强度因子

Numerical Method on Circular Arc Crack in Bi-material Plane
DU Yun-hai,LIU Wen-wen,XU Yi-yang. Numerical Method on Circular Arc Crack in Bi-material Plane[J]. Journal of Zhengzhou University (Natural Science), 2014, 0(1): 98-102
Authors:DU Yun-hai  LIU Wen-wen  XU Yi-yang
Affiliation:(School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001, China)
Abstract:Based on the principle of the hyper-singular integral equation method, the hyper-singular inte- gral equations of the circular arc crack in the bi-material plane were obtained with the coordinate of crack arc length being the basic variable and the displacement discontinuities of crack being unknown func- tions. The corresponding numerical method was established through appropriate variables and functions substitution. Eventually, the problem could be transformed into the solution for a linear equations. The calculation results on the arc crack showed that the crack bending generally led to the positive impact of the decrease of stress intensity factor. The bi-material interface led to the change of the stress intensity factor near the crack: it became larger when the shear modulus ratio G2/G1 〈 1, and it became smaller when G2/G1 〉 1.
Keywords:circular arc crack  bi-material  numerical method  stress intensity factor
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号