首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列模型的河南省房地产价格研究
引用本文:聂淑媛,武新乾. 基于时间序列模型的河南省房地产价格研究[J]. 郑州大学学报(自然科学版), 2014, 0(1): 58-62
作者姓名:聂淑媛  武新乾
作者单位:[1]洛阳师范学院数学科学学院,河南洛阳471022 [2]河南科技大学数学与统计学院,河南洛阳471023
基金项目:河南省教育厅科学技术研究重点项目,编号13A110802;洛阳师范学院省部级培育基金资助项目,编号2012-PYJJ-005;洛阳师范学院教改项目,编号2012024.
摘    要:
以SAS软件为工具,对2009年3月~2013年3月河南省郑州、洛阳和平顶山3个城市新建住宅价格指数序列进行了实证分析.通过比较AIC、SBC值和可决系数R2,拟合3个序列的最终模型分别是郑州的异方差AR(3)-ARCH(1)模型和洛阳、平顶山的以时间变量t为因子的残差自回归模型.预测结果显示,河南省的房价近期仍呈上升态势,郑州的上涨幅度最大,大约是1.4% ~1.5%,洛阳约为0.5%,平顶山约为0.3%.

关 键 词:时间序列模型  SAS软件  住宅价格指数

Real Estate Price in Henan Province Based on Time Series Model
NIE Shu-yuan,WU Xin-qian. Real Estate Price in Henan Province Based on Time Series Model[J]. Journal of Zhengzhou University (Natural Science), 2014, 0(1): 58-62
Authors:NIE Shu-yuan  WU Xin-qian
Affiliation:1. College of Mathematics and Science, Luoyang Normal University, Luoyang 471022, China; 2. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China)
Abstract:
Based on the usual methods of time series analysis and the SAS software, the newly built hous- ing price indices from Mar. 2009 to Mar. 2013 in Zhengzhou, Luoyang and Pingdingshan were empirical- ly analyzed. Three final models, a AR( 3 )-ARCH( 1 ) model for Zhengzhou and two auto-regressive mod- els regarding time variable as the regression factor for Luoyang and Pingdingshan, were established ac- cording to AIC, BIC and total R-square. The forecast result showed that the real estate price in I-Ienan Province would rise in short time. The increasing ranges of the real estate price of Zhengzhou, Luoyang and Pingdingshan would be about 1.4% - 1.5%, 0.5% and 0.3%, respectively.
Keywords:time series model  SAS software  housing price index
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号