首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的谐波电流检测方法
引用本文:王杰,王瑶,彭金柱. 基于极限学习机的谐波电流检测方法[J]. 郑州大学学报(自然科学版), 2014, 0(3): 91-95
作者姓名:王杰  王瑶  彭金柱
作者单位:郑州大学电气工程学院,河南郑州450001
基金项目:基金项目:高等学校博士学科点专项科研项目,编号20124101120001;河南省重点科技攻关项目,编号122102210503.
摘    要:谐波电流检测的实时性和准确度直接影响有源电力滤波器的谐波补偿效果.针对基于传统神经网络谐波检测方法的不足,提出了一种基于极限学习机的谐波电流检测新方法.首先详细给出了极限学习机的训练样本的组成和训练方法,然后构造检测模型实现对谐波电流幅值和相位的检测.仿真结果表明,该谐波电流检测方法的检测精度普遍达到10-6,在有白噪声影响的情况下检测精度达到10-4,与基于传统神经网络的谐波检测方法相比具有更高的检测精度和更强的泛化能力,更加适用于谐波源固定的场合.

关 键 词:极限学习机  谐波检测  谐波幅值  有源电力滤波器

Harmonic Current Detection Algorithm Based on Extreme Learning Machine
WANG Jie,WANG Yao,PENG Jin-zhu. Harmonic Current Detection Algorithm Based on Extreme Learning Machine[J]. Journal of Zhengzhou University (Natural Science), 2014, 0(3): 91-95
Authors:WANG Jie  WANG Yao  PENG Jin-zhu
Affiliation:( School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China)
Abstract:The real-time and accuracy of harmonic current detection influenced the harmonic compensation performance of active power filter directly. A novel harmonic current detection algorithm based on extreme learning machine (ELM) was proposed to overcome the shortage of traditional neural network-based approach for harmonic current detection in this task. Firstly, the training sample composition and training method were presented in detail. Secondly, detection model was constructed to detect harmonic amplitude and phase. Finally, simulation results demonstrated that ELM-based approach could demonstrate better performances in some aspects than traditional neural network-based approach for harmonic current detection, such as computational complexity, calculation speed, the abilities of function approximation and generalization. And the proposed approach would be especially applied to fixed harmonic source.
Keywords:extreme learning machine  harmonic detection  magnitude  active power filter
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号