首页 | 本学科首页   官方微博 | 高级检索  
     

基于标记注意力机制的社区发现算法
引用本文:王静红,梁丽娜,李昊康,王熙照. 基于标记注意力机制的社区发现算法[J]. 山东大学学报(理学版), 2022, 57(12): 1-12. DOI: 10.6040/j.issn.1671-9352.7.2021.097
作者姓名:王静红  梁丽娜  李昊康  王熙照
作者单位:1. 河北师范大学计算机与网络空间安全学院, 河北 石家庄 050024;2. 河北省供应链大数据分析与数据安全工程研究中心(河北师范大学), 河北 石家庄 050024;3. 深圳大学计算机与软件学院, 广东 深圳 518000
基金项目:河北省自然科学基金项目资助项目(F2021205014);引进留学人员资助项目(C20200340)
摘    要:针对网络的聚类进行研究,提出了一种基于标记注意力机制的社区发现算法,网络特征通过标记节点频率及反示例节点频率联合度量,为使网络特征的度量更加关注于示例节点的细节信息,引入注意力机制来处理网络特征。社区划分由复杂网络预处理、网络节点的策略、社区博弈归并三个部分组成,其中网络节点的策略由无贡献节点归并、节点到社区的判断以及节点逻辑标记和的判断三个步骤组成。实验借助于真实网络进行验证,在归一化互信息、模块度、社区划分数量及运行时间四个方面,基于标记注意力机制的社区发现算法都优于其它社区发现算法。在实际生活中应用此算法,能够更加直观地显示网络内部之间存在的联系。

关 键 词:复杂网络  标记节点频率  反示例节点频率  注意力机制  社区发现

Community discovery algorithm based on label attention mechanism
WANG Jing-hong,LIANG Li-na,LI Hao-kang,WANG Xi-zhao. Community discovery algorithm based on label attention mechanism[J]. Journal of Shandong University, 2022, 57(12): 1-12. DOI: 10.6040/j.issn.1671-9352.7.2021.097
Authors:WANG Jing-hong  LIANG Li-na  LI Hao-kang  WANG Xi-zhao
Affiliation:1. School of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, Hebei, China;2. Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics &Data Security(Hebei Normal University), Shijiazhuang 050024, Hebei, China;3. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518000, Guangdong, China
Abstract:For network clustering, this paper proposes a community discovery algorithm based on label attention mechanism. Network features are jointly measured by label node frequency and inverse example node frequency, and attention mechanism is introduced to handle network features in order to make the metric of network features more focused on the detailed information of example nodes. Community division is composed of three parts: complex network preprocessing, network node strategy, and community game merging. The network nodes strategy is consists of three steps: the non-contributing node merging, the judgment of the node to the community and the judgment of the degree of the node. The experiments are verified with the help of real networks. The results show that the community discovery algorithm based on label attention mechanism outperforms other community discovery algorithms in four aspects: normalized mutual information, modularity, number of community divisions and running time. Applying this algorithm in real life can more intuitively show the existing connections within the network.
Keywords:complex network  label node frequency  the inverse example node frequency  attention mechanism  community discovery  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号