首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习的智能车辆行为决策研究
作者姓名:周恒恒  高松  王鹏伟
作者单位:山东理工大学交通与车辆工程学院
基金项目:国家自然科学基金(52102465)
摘    要:自动驾驶车辆决策系统直接影响车辆综合行驶性能,是实现自动驾驶技术需要解决的关键难题之一。基于深度强化学习算法DDPG(deep deterministic policy gradient),针对此问题提出了一种端到端驾驶行为决策模型。首先,结合驾驶员模型选取自车、道路、干扰车辆等共64维度状态空间信息作为输入数据集对决策模型进行训练,决策模型输出合理的驾驶行为以及控制量,为解决训练测试中的奖励和控制量突变问题,本文改进了DDPG决策模型对决策控制效果进行优化,并在TORCS(the open racing car simulator)平台进行仿真实验验证。结果表明本文提出的决策模型可以根据车辆和环境实时状态信息输出合理的驾驶行为以及控制量,与DDPG模型相比,改进的模型具有更好的控制精度,且车辆横向速度显著减小,车辆舒适性以及车辆稳定性明显改善。

关 键 词:自动驾驶  行为决策  深度强化学习  深度确定性策略梯度算法
收稿时间:2023-05-04
修稿时间:2024-01-20
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号