首页 | 本学科首页   官方微博 | 高级检索  
     

试论球面距离
引用本文:玉邴图. 试论球面距离[J]. 文山师范高等专科学校学报, 2005, 18(4): 387-389
作者姓名:玉邴图
作者单位:广南县第一中学,云南,广南,663300
摘    要:在高中数学课本中,关于球面距离问题仅给出定义,相关概念和例题论述较少,而在高考、竞赛及实际生活中,涉及球面问题的却有许多,且有一定的难度,所以,对于高中生来说,是一个难点。为了解决这个难点,介绍一个球心角定理及其推论,然后举例说明它们的应用,其过程反映了球面距离问题的求解思路。

关 键 词:经度  纬度  球心角  球面距离
文章编号:1671-3303(2005)04-0387-03
收稿时间:2005-07-03
修稿时间:2005-07-03

Analysis of the Distance between the Two Points on Spherical Surface
YU Bing-tu. Analysis of the Distance between the Two Points on Spherical Surface[J]. Journal of Wenshan Teachers College, 2005, 18(4): 387-389
Authors:YU Bing-tu
Affiliation:No. 1 Middle School of Guangnan County, Guangnan, Yunnan 663300, China
Abstract:There is the definition of the distance between the two points on spherical surface in senior maths textbook.But the relevant concepts and examples are few.In College Entrance Examination,contest and reality,problems concerning spherical surface are common and difficult for senior students.In order to solve them,the paper introduces a theorem about a phere center angle and gives examples about how to apply it.
Keywords:longitude  latitude  a phere center angle  the distance between the two points on spherical surface
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号