基于混合特征和支持向量机的抽油杆缺陷识别 |
| |
作者姓名: | 孙红春 谢里阳 邢海涛 |
| |
作者单位: | 1. 东北大学,机械工程与自动化学院,辽宁,沈阳,110004 2. 华润雪花啤酒,辽宁,有限公司,辽宁,沈阳,110021 |
| |
基金项目: | 教育部高等学校博士学科点专项科研基金 |
| |
摘 要: | 为了提高抽油杆的缺陷识别率,将小波包能量特征和时域峰峰值特征组成的混合特征向量和基于小样本的支持向量机法应用于抽油杆的缺陷识别中.应用基于类距离的可分离性判据,证明了混合特征比单一小波包能量特征的可分离性强,在一定程度上可提高抽油杆缺陷识别的有效性;同时应用大量的数据和一对一分类的支持向量机进行抽油杆缺陷模式识别.其识别结果表明,混合特征具有比单一小波包能量特征更好的分离性,识别缺陷的泛化误差小,提高了抽油杆的缺陷识别率.
|
关 键 词: | 小波包能量特征 特征提取 模式识别 支持向量机 抽油杆 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《东北大学学报(自然科学版)》下载全文 |
|