首页 | 本学科首页   官方微博 | 高级检索  
     

多级孔板提高井筒气体携液能力实验研究
引用本文:王其伟. 多级孔板提高井筒气体携液能力实验研究[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 78-83. DOI: 10.11885/j.issn.1674-5086.2018.07.24.01
作者姓名:王其伟
作者单位:1. 中国石化胜利油田勘探开发研究院, 山东 东营 257015;2. 中国石油大学(华东)石油工程学院, 山东 青岛 266580
摘    要:气井生产时,井底积液会影响气井产量,甚至导致气井停产.加入泡沫剂、更换小直径油管或氮气举升等措施排出井底积液是保证气井生产的重要手段,但造成液体回流的井筒结构并没有变化.改变适合于单相流体的均一井筒结构,降低气液两相流中液体在井筒的回流,提高气体携液能力,形成适用于气液两相流的井筒结构,可以改善气井生产.实验设计了安装...

关 键 词:排水采气  孔板式气液雾化装置  携液量  排液速度  泡沫排水
收稿时间:2018-07-24

An Experimental Study on Improving the Liquid-carrying Capacity of Wellbore Gas by a Multi-stage Orifice
WANG Qiwei. An Experimental Study on Improving the Liquid-carrying Capacity of Wellbore Gas by a Multi-stage Orifice[J]. Journal of Southwest Petroleum University(Seience & Technology Edition), 2020, 42(1): 78-83. DOI: 10.11885/j.issn.1674-5086.2018.07.24.01
Authors:WANG Qiwei
Affiliation:1. Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying, Shangdong 257015, China;2. School of Petroleum Engineering, China University of Petroleum, Qingdao, Shangdong 266580, China
Abstract:Liquid accumulation in the bottom hole of gas wells will affect the production process and lead to production stoppage in severe cases.Measures currently taken to drain bottom liquid include the adding of foaming agent,replacement of smalldiameter tubing,and nitrogen lift.These measures are play an important role in gas well production,but the wellbore structure that causes liquid backflow has not changed.Changing the conventional wellbore structure to suit for single-phase fluids could help reduce the backflow of liquid in a wellbore of gas-liquid two-phase flow and improve the liquid-carrying capacity.We propose a wellbore structure suitable for gas-liquid two-phase flow that has practical significance for improving gas well production.We design a multi-stage orifice device similar to the inverted funnel that is installed in the wellbore tube.Bottom hole gas is used as the kinetic energy.The orifice plate is designed to reduce or prevent liquid backflow so that the liquid passes through the multi-stage orifice plate and rises sequentially.A gas compressor is used to provide a gas source,and the effect of the addition of the orifice on the gas and foam carrying capacity at different gas flow rates is tested.When the multi-stage orifice device is added into the tube,it greatly improves the gas carrying capacity and the liquid discharging effect of the tube.It also reduces the liquid backflow and the critical value of the gas flow rate in the gas and foam drainage.The experiment proves that the method and principle of multi-stage orifice plate for gas well stimulation works well,improving the gas carrying capacity and the liquid-carrying effect of the foam as well as reducing the amount of foaming agent and residual liquid in the bottom hole.
Keywords:drainage gas recovery  orifice-type gas-liquid atomization device  liquid-carrying capability  drainage velocity  foam drainage
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《西南石油大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南石油大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号