首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的协同多目标粒子群算法
引用本文:周苗,陈义保,刘加光. 一种新的协同多目标粒子群算法[J]. 山东理工大学学报:自然科学版, 2008, 22(5): 6-10
作者姓名:周苗  陈义保  刘加光
作者单位:烟台大学机电汽车工程学院,山东 烟台,264005;烟台大学机电汽车工程学院,山东 烟台,264005;烟台大学机电汽车工程学院,山东 烟台,264005
摘    要:提出了一种动态协同多目标粒子群算法,该算法采用一种新型群体停滞判别准则,自适应地决定子群体的新增和灭绝。用外部集合及精英保留策略保存Pareto有效解,用于指导整个粒子群的进化。通过子群体间的信息交换,使整个群体分布更均匀,并且避免了局部最优,保证了解的多样性。对弹簧的优化设计实例进行验证,与传统的多目标算法相比,该算法能够获得更优的结果。

关 键 词:多目标优化  协同进化  粒子群算法  外部集合  自适应

A new kind of cooperative multi-objective particle swarm optimization algorithm
ZHOU Miao,CHEN Yi-bao,LIU Jia-guang. A new kind of cooperative multi-objective particle swarm optimization algorithm[J]. Journal of Shandong University of Technology:Science and Technology, 2008, 22(5): 6-10
Authors:ZHOU Miao  CHEN Yi-bao  LIU Jia-guang
Affiliation:ZHOU Miao,CHEN Yi-bao,LIU Jia-guang(School of Electromechanical Automobile Engineering,Yantai University,Yantai 264005,China)
Abstract:A new kind of dynamical cooperative multi-objective particle swarm optimization algorithm is proposed.Using a new kind of criterion for judging the stagnation of the population,the sub-population is adaptively added or deleted during the running of the algorithm,which makes the number of the sub-populations vary dynamically.Pareto efficient solutions are saved based on external sets and elites to keep the tactics.This is used to guide the evolution of the whole particle swarm.By the exchanges of information...
Keywords:multi-objective optimization  co-evolution  particle swarm optimization  external sets  adaptation  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号