首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像内容和特征融合的隐写盲检测
引用本文:李侃,平西建. 基于图像内容和特征融合的隐写盲检测[J]. 应用科学学报, 2013, 31(1): 97-103. DOI: 10.3969/j.issn.0255-8297.2013.01.016
作者姓名:李侃  平西建
作者单位:1. 解放军信息工程大学信息工程学院,郑州4500022. 解放军西安通信学院军事电子工程系,西安710106
基金项目:国家自然科学基金(No.60970142)资助
摘    要:随着特征选择和分类技术研究的不断深入,盲检测的精度越来越高,但现有方法大多不考虑图像自身的内容特性对检测的影响. 该文提出一种基于图像内容和特征融合的盲检测方法,根据图像复杂度将待检测图像划分为不同的子图像库,以巴氏距离度量各局部特征的分类能力并确定权值,在特征融合基础上对各子库提取不同特征,用支持向量机进行分类. 在混合图像库上进行的实验表明,该方法具有更好的检测性能,并降低了运算复杂度.

关 键 词:隐写分析  图像内容  特征融合  巴氏距离  
收稿时间:2011-07-05
修稿时间:2011-10-23

Blind Steganalysis Based on Image Content and Feature Fusion
LI Kan , PING Xi-jian. Blind Steganalysis Based on Image Content and Feature Fusion[J]. Journal of Applied Sciences, 2013, 31(1): 97-103. DOI: 10.3969/j.issn.0255-8297.2013.01.016
Authors:LI Kan    PING Xi-jian
Affiliation:1. Institute of Information Engineering, PLA Information Engineering University, Zhengzhou 450002, China;2. Faculty of Automation and Information Engineering, PLA Xi’an Communication Institute, Xi’an 710106, China
Abstract:With increasing research on image feature vector extraction and classification, blind steganalysis is becoming more efficient and accurate. However, many existing methods use similar processing for all images without taking account the diverse image contents. This paper proposes a new approach based on
image contents and feature fusion. The input images are divided into several classes according to the content complexity before feature extraction. Bhattacharyya distance is used to evaluate the usefulness of individual features and determine their weights. Steganalysis is subsequently conducted using a fusing approach and a support vector machine (SVM) classifier in a decision making process. Experimental results on several sets of images demonstrate that the proposed steganalyzer outperforms some previous methods. It provides reliable results with reduced computational complexity.
Keywords:steganalysis   image content  feature fusion  Bhattacharyya distance  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号