首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像条件的二元合成生成算法
引用本文:张 婷. 基于图像条件的二元合成生成算法[J]. 西昌学院学报(自然科学版), 2020, 34(2): 69-72
作者姓名:张 婷
作者单位:安徽粮食工程职业学院信息技术系,安徽 合肥 230011
摘    要:生成对抗网络(GAN)是一种无监督学习方法,该算法巧妙地利用博弈的思想来学习生成式模型,但由于GAN通常从单个潜在源采样,因此常常丢失场景中的多个实体交互信息.为了捕获不同对象之间的复杂交互,包括它们的相对缩放,空间布局,遮挡,提出了一种基于图像条件的生成对抗网络,利用分解—合成的流程,模型可以根据输入对象的纹理和...

关 键 词:生成对抗网络  图像合成  图像纹理  交互信息

Binary Synthesis Generation Algorithm Based on Image Conditions
ZHANG Ting. Binary Synthesis Generation Algorithm Based on Image Conditions[J]. Journal of Xichang College, 2020, 34(2): 69-72
Authors:ZHANG Ting
Affiliation:Department of Information Technology, Anhui Vocational College of Food Engineering,Hefei, Anhui 230011, China
Abstract:The Generative Adversarial Network (GAN) can generate images with significant complexity andauthenticity, but it is usually constructed to sample from a single potential source, thus ignoring spatial interactionsbetween multiple entities that may exist in the scene. To capture the complex interactions between different objects,including their relative scaling, spatial layout, occlusion or view conversion, in this paper we propose an imagecondition-based generative adversarial network by using decomposition-synthesis procedures. The model cangenerate realistic composite images from their joint distributions based on their texture and shape of the input object.Through use of Shapenet data set, we experiment on 51 300 image models out of the respective 55 common objects inthe 2D and 3D images. Compared with the traditional SLP and cGAN, the image quality in our algorithm can beimproved by 4%.
Keywords:Generative Adversarial Network   image synthesis   image texture   interactive information
本文献已被 CNKI 等数据库收录!
点击此处可从《西昌学院学报(自然科学版)》浏览原始摘要信息
点击此处可从《西昌学院学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号