首页 | 本学科首页   官方微博 | 高级检索  
     

电磁层析成像:图像重建与BP网络
引用本文:熊汉亮,王安文,徐苓安. 电磁层析成像:图像重建与BP网络[J]. 天津大学学报(自然科学与工程技术版), 2000, 33(2): 138-143
作者姓名:熊汉亮  王安文  徐苓安
作者单位:天津大学电气自动化与能源工程学院!天津300072
基金项目:国家自然科学基金资助项目! (695740 2 1和 598770 1 8)
摘    要:描述了BP网络应用于EMT图像重建的基本原理和简易模型。网络的输入是传感器二维磁场正问题的有限元仿真得到的测量数据,网络 则特体空间各剖分单元的0-1状态值,网络用共轭梯度法改进的误差逆传播算法进行训练。简单物流的图像重建结果表明,网络模型在原理上提可行的,为进上步研究提供了初步基础。

关 键 词:过程成像 电磁场 BP网络 图像重建 电磁层析成像

ELECTROMAGETIC TOMOGRAPHY (EMT):IMAGE RECONSTRUCTION AND BP NETWORKS
XIONG Han-liang,WAN An-wen,XU Ling-an. ELECTROMAGETIC TOMOGRAPHY (EMT):IMAGE RECONSTRUCTION AND BP NETWORKS[J]. Journal of Tianjin University(Science and Technology), 2000, 33(2): 138-143
Authors:XIONG Han-liang  WAN An-wen  XU Ling-an
Abstract:The paper presents a BP neural network approach applied to image rconstruction of electromagnetic tomography (EMT).The input of the network was measurements of the EMT sensor,which were obtained by solving the forward electroomagnetic problem of the sensor by finite element simulation.State values (0 1) of all the elements in the object space were taken as the output of the network.The network was trained with the error back propagation algorithm improved by such means as the conjugate gradient optimization method.The initial results of image reconstruction for simple and easy two component flows show that the model feasible is in principle,which gives a basis to further analysis and research.
Keywords:process tomography  electromagnetic fields  finite element methods  BP networks  image reconstruction  sensor techniques  two phase flow measurements
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号