摘 要: | 针对电子设备的健康性能退化问题,提出一种改进流形学算法与隐半马尔可夫模型(hidden semi Markov model, HSMM)相结合的电子设备健康评估与故障预测方法。首先,在有监督邻域保持投影(supervised neighborhood preserving projection, SNPP)算法中引入非相关约束并加入核函数形成核有监督非相关邻域保持投影(kernel supervised uncorrelated neighborhood preserving projection,KSUNPP)算法,将其用于原始特征的提取,获得有效的特征集作为HSMM的输入进行训练|其次,建立了电子设备健康评估与故障预测模型,该模型用Kullback Leibler (KL)距离来衡量故障程度,实现设备退化程度的评估,又可根据各状态驻留时间,预测出设备故障发生的时间。最后,将该方法应用于某型导弹电子设备的健康评估与故障预测,验证其有效性。
|