首页 | 本学科首页   官方微博 | 高级检索  
     

基于MRF的高分辨率SAR图像道路网自动提取
引用本文:程江华,高贵,库锡树,孙即祥. 基于MRF的高分辨率SAR图像道路网自动提取[J]. 系统工程与电子技术, 2012, 34(7): 1377-1381. DOI: 10.3969/j.issn.1001-506X.2012.07.14
作者姓名:程江华  高贵  库锡树  孙即祥
作者单位:国防科学技术大学电子科学与工程学院, 湖南 长沙 410073
基金项目:国家自然科学基金(40801179)资助课题
摘    要:各种干扰的存在使得高分辨率合成孔径雷达(synthetic aperture radar,SAR)图像道路网的提取变得异常困难。马尔可夫随机场(Markov random field, MRF)模型能够充分利用道路图像的上下文特征以及先验知识,在道路网提取中得到广泛应用,但存在求解过程偏慢及参数设置偏多问题。首先根据道路空间几何特征关系对提取出的线基元进行预连接,以此减少虚假连接给MRF迭代求解带来的运算量;然后建立MRF道路网改进模型对道路网进行快速标记。使用1m机载高分辨率SAR图像进行实验,结果验证了该方法的有效性。

关 键 词:合成孔径雷达  高分辨率  马尔科夫随机场  道路网

Automatic road network extraction in high resolution SAR images based on MRF
CHENG Jiang-hua , GAO Gui , KU Xi-shu , SUN Ji-xiang. Automatic road network extraction in high resolution SAR images based on MRF[J]. System Engineering and Electronics, 2012, 34(7): 1377-1381. DOI: 10.3969/j.issn.1001-506X.2012.07.14
Authors:CHENG Jiang-hua    GAO Gui    KU Xi-shu    SUN Ji-xiang
Affiliation:College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract:It is extremely difficult to extract road networks from high resolution synthetic aperture radar(SAR) images due to the presence of various disturbances.Markov random field(MRF) model can make full use of the imagery contextual characters and priori knowledge,which have been widely used to extract road networks.However,there exist some problems such as slow solution and many parameters setting of these type methods.In order to reduce the computation of subsequent iterative solution of MRF,pre-linking is firstly introduced to remove numerous false line elements based on the spatial relationship among them.Then the improved road networks Markov function model is established to label road networks.SAR images with 1 meter resolution are tested in the experiment.The results show the effectivity of the method mentioned above in high resolution SAR imagery road network extraction.
Keywords:synthetic aperture radar(SAR)  high-resolution  Markov random field(MRF)  road network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号