首页 | 本学科首页   官方微博 | 高级检索  
     

模糊遗传滚动优化的LS-SVM预测控制研究
引用本文:高异,杨延西,刘军. 模糊遗传滚动优化的LS-SVM预测控制研究[J]. 系统仿真学报, 2007, 19(6): 1277-1280
作者姓名:高异  杨延西  刘军
作者单位:西安理工大学107#,西安,710048
摘    要:提出一种基于最小二乘支持向量机(LS-SVM)的非线性系统预测控制算法。该算法通过LS-SVM对非线性系统输入输出数据序列的训练学习建立其预测模型;基于模糊遗传算法完成非线性预测控制的滚动优化过程。仿真结果表明基于该方法的非线性系统预测控制比基于RBF神经网络的预测控制具有更好的控制效果。

关 键 词:预测控制  最小二乘支持向量机  模糊遗传算法  神经网络
文章编号:1004-731X(2007)06-1277-04
收稿时间:2006-02-07
修稿时间:2006-12-28

Research on LS-SVM Predictive Control Using Fuzzy Genetic Algorithm Rolling Optimization
GAO Yi,YANG Yan-xi,LIU Jun. Research on LS-SVM Predictive Control Using Fuzzy Genetic Algorithm Rolling Optimization[J]. Journal of System Simulation, 2007, 19(6): 1277-1280
Authors:GAO Yi  YANG Yan-xi  LIU Jun
Abstract:A nonlinear predictive control algorithm based on least squares support vector machines (LS-SVM) model was proposed. The nonlinear off-line model of the nonlinear system was obtained by LS-SVM to train a sequence data of input and output. The whole rolling optimization procedure was finished by fuzzy genetic algorithms (FGA). The simulation results illustrate that the nonlinear predictive control using LS-SVM is more effective than using RBF network.
Keywords:predictive control  least square support vector machines  fuzzy genetic algorithms  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号