首页 | 本学科首页   官方微博 | 高级检索  
     

常微分方程基于GAUSS型积分的数值解法
引用本文:陈则民. 常微分方程基于GAUSS型积分的数值解法[J]. 天津科技大学学报, 1992, 0(1)
作者姓名:陈则民
作者单位:天津轻工业学院
摘    要:提出用Gauss-Legendre求积公式构造常微分方程初值问题的离散化格式,以给出一种求解此类问题的数值方法。文中根据两点与三点Gauss-Legendre求积公式及逼近Gauss点处函数值的不同方法,列出十余种计算格式,并说明它们的收敛性和稳定性。各种格式是针对一阶常微分方程提出的,但同样也适用于一阶常微分方程组和高阶常微分方程的初值问题。

关 键 词:常微分方程  求积公式  数值解法

NUMERICAL METHODS BASED ON GAUSS QUADRATURE FORMULA FOR ORDINARY DIFFERFNTIAL EQUATIONS
Chen Zemin. NUMERICAL METHODS BASED ON GAUSS QUADRATURE FORMULA FOR ORDINARY DIFFERFNTIAL EQUATIONS[J]. Journal of Tianjin University of Science & Technology, 1992, 0(1)
Authors:Chen Zemin
Abstract:With the aid of Gauss-Legendre quadrature formulas, this paper suggests some discrete schemes of initial-value problems of ordinary differential equations to obtain a numerical method to solve these problems. According to Gauss-Legendre formulas with two or three arguments and various methods to approach to the function values at Gauss points we enumerate more than ten computation schemes and explain their convergence and stability.Those schemes is aimed to first-order equations, but they can also use to systems of equations and high-order equations.
Keywords:Ordinary Differential Equation   Gauss-Le0endre   Quadrature Formula   Numerical Method  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号