首页 | 本学科首页   官方微博 | 高级检索  
     

调和函数在多重L算子作用下的单叶半径估计
引用本文:王其文,黄心中. 调和函数在多重L算子作用下的单叶半径估计[J]. 漳州师院学报, 2013, 0(1): 9-18
作者姓名:王其文  黄心中
作者单位:华侨大学数学科学学院,福建泉州362021
基金项目:福建省自然科学基金资助项目(2011J0101)
摘    要:若f(z)为定义在单位圆盘D={z||z|〈1}上的调和函数,L=zd/di-d/ 为微分算子.本文研究在调和函数f(z)的系数模满足两个著名猜想及某些系数模界限条件下,多重L算子作用于f(z)下的单叶半径估计问题,分别得到相应的精确单叶半径表达式.

关 键 词:调和函数  微分算子  单叶半径  系数界限

Estimates on the Univalent Radius for Harmonic Mappings under Multiple Differential Operators
WANG Qi-wen,HUANG Xin-zhong. Estimates on the Univalent Radius for Harmonic Mappings under Multiple Differential Operators[J]. Journal of ZhangZhou Teachers College(Philosophy & Social Sciences), 2013, 0(1): 9-18
Authors:WANG Qi-wen  HUANG Xin-zhong
Affiliation:(School of Mathematical sciences, Huaqiao University, Quanzhou, Fujian 362021, China)
Abstract:Suppose that f(z) is a harmonic mapping on the unit disk D={z||z|〈1}. Let L represents the differential operator L=zd/di-d/ . In this note, we obtain several sharp estimates on univalent radii for the harmonic mappings that are obtained by multiple differential operators L acting on the given harmonic mapping f(z) with its coefficients satisfying two famous conjecture bounds and some general expression bound.
Keywords:harmonic mapping  differential operator  univalent radius  coefficient bound
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号