首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere. Galileo Imaging Team
Authors:Ingersoll  Gierasch  Banfield  Vasavada
Institution:Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, USA. api@gps.caltech.edu
Abstract:Jupiter's dominant large-scale weather patterns (dimensions approximately 10,000 km) are zonal jets and long-lived ovals. The jets have been flowing east and west at constant speeds of up to 180 m s(-1) for over 100 years. These jets receive energy from small-scale eddies, which pump eastward momentum into the eastward jets and westward momentum into the westward jets. This momentum transfer was predicted by numerical models before it was observed on Jupiter. The large ovals roll between the jets in an anticyclonic direction-clockwise in the northern hemisphere and counterclockwise in the southern hemisphere--where they regularly assimilate small anticyclonic eddies. But from where the eddies receive their energy has been an open question. Here we argue that the eddies, which ultimately drive both the jets and the ovals, receive their energy from moist convection. This hypothesis is consistent with observations of jovian lightning, which is an indicator of moist convection. It also explains the anticyclonic rotation and poleward drift of the eddies, and suggests patterns of upwelling and downwelling that resemble the patterns of large-scale axisymmetric overturning in the Earth's atmosphere.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号