首页 | 本学科首页   官方微博 | 高级检索  
     

一类超线性Dirichlet问题无穷多个径向对称解的存在性
引用本文:褚后利,魏公明. 一类超线性Dirichlet问题无穷多个径向对称解的存在性[J]. 上海理工大学学报, 2013, 35(2): 121-125
作者姓名:褚后利  魏公明
作者单位:上海理工大学 理学院,上海200093;上海理工大学 理学院,上海200093
摘    要:应用常微分方程的能量分析法和相平面分析法证明了球上一类超线性Dirichlet问题存在无穷多个径向对称解.首先将所研究的问题转化为常微分方程,进而利用压缩映射原理证明常微分方程问题存在解,从而得到原问题存在无穷多个径向对称解.这一结果对某些不满足PS序列紧性条件和超出Sobolev嵌入定理临界指数的非线性增长条件仍然成立,并给出具体实例,说明了采用这种方法研究问题的优势.

关 键 词:超线性Dirichlet问题  径向对称解  能量分析  相平面分析

Existence of Infinite Radially Symmetric Solutions for Superlinear Dirichlet Problem
CHU Houli and WEI Gongming. Existence of Infinite Radially Symmetric Solutions for Superlinear Dirichlet Problem[J]. Journal of University of Shanghai For Science and Technology, 2013, 35(2): 121-125
Authors:CHU Houli and WEI Gongming
Affiliation:(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
Abstract:A radially symmetric superlinear Dirichlet problem was studied by using the energy analysis and the phase plane analysis.The problem was turned into a boundary value problem of ordinary differential equation.The contraction mapping principle was used to verify the existence of solutions of the differential equation and thereby to prove the existence of infinite radially symmetric solutions.The same result can be still obtained when the growth of the nonlinearity surpasses the critical exponent of the Sobolev embedding theorem or does not satisfy the Palais Smale condition.Some examples were given to show the advantage of these methods.
Keywords:superlinear Dirichlet problem   radially symmetric solutions   energy analysis   phase plane analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《上海理工大学学报》浏览原始摘要信息
点击此处可从《上海理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号