首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知的实时在线目标追踪
引用本文:陈一根,黄继风. 基于压缩感知的实时在线目标追踪[J]. 上海师范大学学报(自然科学版), 2018, 47(4): 483-487
作者姓名:陈一根  黄继风
作者单位:上海师范大学信息与机电工程学院
摘    要:
在正负样本区域随机抽取了不同尺度下图像的局部二值模式(LBP)特征,将高维的特征信息投射到低秩的压缩域,并据此建立了表观模型.使用一个随机稀疏测量矩阵来压缩前景和背景目标.将追踪问题转化成为了一个使用朴素贝叶斯分类器的二元分类问题.所提方法可以较快速、实时地在线追踪目标,同时解决了目标尺度变化、遮挡问题.

关 键 词:计算机视觉  目标追踪  压缩感知  局部二值模式(LBP)
收稿时间:2016-11-05

Real-Time online target tracking based on compressed sensing
Chen Yigen and Huang Jifeng. Real-Time online target tracking based on compressed sensing[J]. Journal of Shanghai Normal University(Natural Sciences), 2018, 47(4): 483-487
Authors:Chen Yigen and Huang Jifeng
Affiliation:The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China and The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
We randomly extracted the feature of local binary patterns(LBP) with different sizes within both positive samples and negative samples.The high-dimensional feature information was projected onto the low rank compression domain based on which the characterization model was established.Then,it compressed samples of foreground and the background targets by using the same random sparse measurement matrix.Finally,the tracking task was formulated as a binary classification via a Naive Bayes classifier.The experiment showed that the proposed method could track the target quickly and constantly.Furthermore,it could also solve the problem of multi-scale change and occlusion issue at the same time.
Keywords:computer vision  target tracking  compressed sensing  local binary pattern (LBP)
本文献已被 CNKI 等数据库收录!
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号