首页 | 本学科首页   官方微博 | 高级检索  
     

结合灰度熵变换的PCNN小目标图像检测新方法
作者姓名:刘勍  许录平  马义德  张华
作者单位:西安电子科技大学,电子工程学院,陕西,西安,710071;天水师范学院,物理与信息科学学院,甘肃,天水,741001;西安电子科技大学,电子工程学院,陕西,西安,710071;兰州大学,信息科学与工程学院,甘肃,兰州,730000
基金项目:国家"八六三"计划项目,国家自然科学基金资助项目,天水师范学院"青蓝"人才工程基金 
摘    要:为了自动地进行小目标图像分割检测,从含单一弱小目标图像的特征出发,提出了一种结合灰度熵变换的脉冲耦合神经网络(PCNN)小目标图像分割检测新方法. 该方法在对有随机噪声和复杂背景图像进行非线性灰度熵变换滤波的基础上,考虑灰度熵值灰度图在满足先验概率目标背景比条件下,选择包含单一小目标局部窗口作为处理图像区域,并在局部最小交叉熵判据下,进行改进型PCNN迭代分割检测处理. 实验结果表明,该方法不仅能可靠地检测出复杂背景及随机噪声干扰下弱小目标,并且在PCNN运行处理过程中,可自动地完成最佳分割检测.

关 键 词:小目标图像  灰度熵变换  脉冲耦合神经网络(PCNN)  局部最小交叉熵  分割检测
收稿时间:2008-10-09
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号