首页 | 本学科首页   官方微博 | 高级检索  
     

结合灰度熵变换的PCNN小目标图像检测新方法
引用本文:刘勍,许录平,马义德,张华. 结合灰度熵变换的PCNN小目标图像检测新方法[J]. 北京理工大学学报, 2009, 29(12): 1085-1090
作者姓名:刘勍  许录平  马义德  张华
作者单位:西安电子科技大学,电子工程学院,陕西,西安,710071;天水师范学院,物理与信息科学学院,甘肃,天水,741001;西安电子科技大学,电子工程学院,陕西,西安,710071;兰州大学,信息科学与工程学院,甘肃,兰州,730000
基金项目:国家"八六三"计划项目,国家自然科学基金资助项目,天水师范学院"青蓝"人才工程基金 
摘    要:
为了自动地进行小目标图像分割检测,从含单一弱小目标图像的特征出发,提出了一种结合灰度熵变换的脉冲耦合神经网络(PCNN)小目标图像分割检测新方法. 该方法在对有随机噪声和复杂背景图像进行非线性灰度熵变换滤波的基础上,考虑灰度熵值灰度图在满足先验概率目标背景比条件下,选择包含单一小目标局部窗口作为处理图像区域,并在局部最小交叉熵判据下,进行改进型PCNN迭代分割检测处理. 实验结果表明,该方法不仅能可靠地检测出复杂背景及随机噪声干扰下弱小目标,并且在PCNN运行处理过程中,可自动地完成最佳分割检测.

关 键 词:小目标图像  灰度熵变换  脉冲耦合神经网络(PCNN)  局部最小交叉熵  分割检测
收稿时间:2008-10-09

Novel Detection Method Using PCNN Combined with Gray Scale Entropy Transform in Small Target Images
LIU Qing,XU Lu-ping,MA Yi-de and ZHANG Hua. Novel Detection Method Using PCNN Combined with Gray Scale Entropy Transform in Small Target Images[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2009, 29(12): 1085-1090
Authors:LIU Qing  XU Lu-ping  MA Yi-de  ZHANG Hua
Abstract:
In order to conduct small target image segmentation automatically, a new method based on pulse couple neural networks(PCNN) and the gray scale entropy, is proposed for image segmentation and detection, starting from the aspect of characteristics of single small target image. Based on nonlinear gray scale entropy transform on an image with complex background and stochastic noise, this algorithm takes into account the condition that the gray scale images of gray scale entropy satisfy the object to background ratio of prior probability, and select the local region including a single small target which can be regarded as image processing part. Iterative segmentation and detection using improved PCNN is utilized under the criterion of local minimum cross-entropy. The experimental results show that the novel method not only can detect small target with the disturbance of complex background and random noise reliably, but also implement the best segmentation and detection automatically. This algorithm has stronger adaptability and performs well in target detecting.
Keywords:small target image  gray scale entropy transform  pulse couple neural networks(PCNN)  local minimum cross-entropy  segmentation and detection
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号