首页 | 本学科首页   官方微博 | 高级检索  
     

无穷维空间中微分包含可达集的唯一性
作者姓名:王东  徐景峰
作者单位:南开数学研究所,天津,300071;南开大学数学系,天津,300071
摘    要:在可分Banach空间X中考虑下列微分包含的可达集x(t)∈F(t,x(t)),a.e.t∈[t0,T]x(t0)=ξ{其中F是从[t0,T]×X到X的取紧凸值的非空集值映射.给出了有关可达集的一些性质,并且利用有关可达集的集值映射t~→R(t0,t;ξ)关于t的半群性质,证明了可达集的唯一性.其中R(t0,t;ξ)是微分包含的可达集

关 键 词:微分包含  可达集  集值映射  逃逸时间
修稿时间:1998-06-22
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号