首页 | 本学科首页   官方微博 | 高级检索  
     

高阶神经网络与二阶隐马尔柯夫模型的统一的数学模型
引用本文:黄载禄,冯昭志,万发贯. 高阶神经网络与二阶隐马尔柯夫模型的统一的数学模型[J]. 华中科技大学学报(自然科学版), 1993, 0(6)
作者姓名:黄载禄  冯昭志  万发贯
作者单位:华中理工大学电子与信息工程系(黄载禄,冯昭志),华中理工大学电子与信息工程系(万发贯)
基金项目:中国科学院国家模式识别实验室资助项目
摘    要:随着VLSI技术的迅猛发展,对神经网络与隐马尔柯夫模型(HMM’s)之问的关系研究已成为信息处理领域的一个重要的研究方向.在分析高阶神经网络和二阶HMM’s的结构及算法的基础上,提出了这两种模型的统一数学模型,从而为这两种模型的systolic设计奠定了基础.

关 键 词:神经网络  二阶隐马尔柯夫模型  循环  统一模型  systolic设计

A Unified Model for the High Order Multilayer Feedforward Neural Network and Second Order Hidden Markov Models
Huang Zailu Feng Zhaozhi Wan Faguan. A Unified Model for the High Order Multilayer Feedforward Neural Network and Second Order Hidden Markov Models[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 1993, 0(6)
Authors:Huang Zailu Feng Zhaozhi Wan Faguan
Affiliation:Huang Zailu Feng Zhaozhi Wan Faguan
Abstract:With the rapid progress made in VLSI technology, investigations on the relationship between neural networks and hidden Markov models (HMM's) have become an important research direction in the field of information processing. In this paper, the relationship between the high order multilayer neural network (HMNN) and second order HMM is studied. The architecture of recurrent HMNN is presented and the retrieving and learning phases of recurrent HMNN are discussed. The structure and algorithm of the second order HMM are described. Based on the close algorithmic similarity in the learning technique, a unified formulation for the two models is proposed.
Keywords:neural network  second order HMM  recurrent  unified model  systolic design  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号