首页 | 本学科首页   官方微博 | 高级检索  
     

基于GPU的多类支持向量机改进算法
引用本文:顾德闯,杨永健. 基于GPU的多类支持向量机改进算法[J]. 吉林大学学报(理学版), 2015, 53(1): 107-111
作者姓名:顾德闯  杨永健
作者单位:吉林大学 计算机科学与技术学院, 长春 130012
基金项目:教育部博士学科点专项基金
摘    要:针对支持向量机算法耗时较长的问题,利用并行计算思想,基于图形处理器对多类支持向量机算法——Crammer-Singer算法进行改进,并利用循环展开、数据暂留、缓存和开放运算语言等技术对算法加以实现.分别在4个数据集上对原算法和改进算法进行对比实验,结果表明,改进算法在性能上获得了较大提升.

关 键 词:支持向量机  多分类  图形处理器  并行计算  开放运算语言  
收稿时间:2014-03-13

Improvement of Multiclass Support Vector Machines Based on Graphic Processor
GU Dechuang,YANG Yongjian. Improvement of Multiclass Support Vector Machines Based on Graphic Processor[J]. Journal of Jilin University: Sci Ed, 2015, 53(1): 107-111
Authors:GU Dechuang  YANG Yongjian
Affiliation:College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract:According to the phenomenon that the support vector machine algorithm takes too much time, the idea of using parallel computation was used to solve this problem. Based on this, an improvement of the classic multiclass support vector machine algorithm first proposed by Crammer and Singer was made, and it was realized by using the great parallel ability of graphic processor. Technology of loop unrolling, data staying, cache and open computing language were used for implementing the improved algorithm. The original algorithm and the improved algorithm were executed on the same four datasets. And the experimental results show that the improved algorithm is much better than the original algorithm in performance of time.
Keywords:support vector machine  multiclass  graphic processing unit  parallel computation  open computing language
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号