首页 | 本学科首页   官方微博 | 高级检索  
     

基于联合注意力-可分离卷积的立体匹配算法
作者姓名:张伟  黄娟  顾寄南  黄则栋  李兴家  刘星
基金项目:江苏省重点研发计划-重点项目(BE2021016);
摘    要:为解决立体匹配网络模型轻量化与高精度不能共存的问题,本文提出新的立体匹配算法CSA-Net。算法具体是在特征提取阶段,利用类ResNet进行特征提取,训练空洞金字塔池化(ASPP)模块扩大感受野,提取多尺度上下文信息,加入联合注意力机制(CSM),在空间和通道维度提高表征能力,关注重要特征并抑制不必要的特征。在特征融合阶段,将2D深度可分离卷积提升到3D来代替原网络中标准3D卷积在空间维度和通道维度分别进行卷积运算,以降低特征融合网络的参数量与模型运行时间。最终实验表明,本文所提出的立体匹配网络模型在KITTI 2012和2015数据集进行验证,在三像素匹配误差率为1.44%和2.24%,模型运行时间减少近1/3。因此,相比于其他实现了更高的匹配精度和更快的运行速度。

关 键 词:卷积神经网络  立体匹配  深度可分离卷积  联合注意力
收稿时间:2022-11-25
修稿时间:2023-07-28
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号