摘 要: | 为解决立体匹配网络模型轻量化与高精度不能共存的问题,本文提出新的立体匹配算法CSA-Net。算法具体是在特征提取阶段,利用类ResNet进行特征提取,训练空洞金字塔池化(ASPP)模块扩大感受野,提取多尺度上下文信息,加入联合注意力机制(CSM),在空间和通道维度提高表征能力,关注重要特征并抑制不必要的特征。在特征融合阶段,将2D深度可分离卷积提升到3D来代替原网络中标准3D卷积在空间维度和通道维度分别进行卷积运算,以降低特征融合网络的参数量与模型运行时间。最终实验表明,本文所提出的立体匹配网络模型在KITTI 2012和2015数据集进行验证,在三像素匹配误差率为1.44%和2.24%,模型运行时间减少近1/3。因此,相比于其他实现了更高的匹配精度和更快的运行速度。
|