首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle size and energetics of gouge from earthquake rupture zones
Authors:Wilson Brent  Dewers Thomas  Reches Ze'ev  Brune James
Institution:School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73019, USA.
Abstract:Grain size reduction and gouge formation are found to be ubiquitous in brittle faults at all scales, and most slip along mature faults is observed to have been localized within gouge zones. This fine-grain gouge is thought to control earthquake instability, and thus understanding its properties is central to an understanding of the earthquake process. Here we show that gouge from the San Andreas fault, California, with approximately 160 km slip, and the rupture zone of a recent earthquake in a South African mine with only approximately 0.4 m slip, display similar characteristics, in that ultrafine grains approach the nanometre scale, gouge surface areas approach 80 m2 g(-1), and grain size distribution is non-fractal. These observations challenge the common perception that gouge texture is fractal and that gouge surface energy is a negligible contributor to the earthquake energy budget. We propose that the observed fine-grain gouge is not related to quasi-static cumulative slip, but is instead formed by dynamic rock pulverization during the propagation of a single earthquake.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号