首页 | 本学科首页   官方微博 | 高级检索  
     

LM算法在神经网络语音识别中的应用
引用本文:孙峰. LM算法在神经网络语音识别中的应用[J]. 科学技术与工程, 2011, 11(9): 2021-2024,2033
作者姓名:孙峰
作者单位:四川理工学院自动化与电子信息学院,自贡,643000
摘    要:输入语音信号中声音的特征提取和分类识别可以通过多层前馈神经网络大量学习实现,但基于误差反向传播的前馈神经网络(BP神经网络)标准算法收敛速度慢,在训练中效率不高。采用一种快速稳定的Levenberg-Marquardt算法进行语音识别,通过对语音信号的预处理、特征提取和网络结果优化,建立了网络训练样本集,用MATLAB进行了仿真,仿真结果表明,该算法优于传统的BP算法,具有更好的收敛性。

关 键 词:语音识别  神经网络  Levenberg-Marquardt算法  隐层节点优选
收稿时间:2010-12-25
修稿时间:2010-12-25

Application of LM Algorithm in Neural Network Speech Recognition
sunfeng. Application of LM Algorithm in Neural Network Speech Recognition[J]. Science Technology and Engineering, 2011, 11(9): 2021-2024,2033
Authors:sunfeng
Affiliation:SUN Feng,YAO Yi,LI Cheng-gang (School of Automation and Electronic Information,Sichuan University of Science and Engineering,Zigong 643000,P.R.China)
Abstract:A multi-layer feed forward neural network was designed to achieve feature extraction and recognition from speech signals inputted with much study. However, the normal BP algorithm had slow convergence rate and low efficiency .The paper adopted a fast and stable Levenberg-Marquardt algorithm for speech recognition, preprocessed speech signals ,extracted features, optimized results of network and set in the training sample of neural network. The simulation was carried out by MATLAB.As it turned out, the algorithm is superior to traditional BP algorithms and have better astringency.
Keywords:speech recognition   neural network   Levenberg-Marquardt algorithm   hidden layer nodes optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号