首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM-XGboost组合的超短期风电功率预测方法
引用本文:王愈轩,梁沁雯,章思远,刘尔佳,黄永章. 基于LSTM-XGboost组合的超短期风电功率预测方法[J]. 科学技术与工程, 2022, 22(14): 5629-5635
作者姓名:王愈轩  梁沁雯  章思远  刘尔佳  黄永章
作者单位:华北电力大学电气与电子工程学院
基金项目:中央高校基本科研业务费专项基金(2019QN117)
摘    要:受数值天气预报信息影响,风电功率变化具有较强的随机波动性,传统单一预测模型精度较低,难以满足现实预测需求。为此,提出基于LSTM-XGboost组合的超短期风电功率预测方法。首先,基于风电场的气象数据,采用皮尔逊相关系数法筛选与风电功率强相关的气象数据,建立风电功率预测模型数据集;然后,将归一化处理的数据集作为LSTM(long short-term memory)和XGboost (extreme gradient boosting)的模型输入,分别构建LSTM和XGboost的超短期风电预测模型,在此基础上,采用误差倒数法对LSTM和XGboost的预测数据进行加权构建组合预测模型;最后,以张家口某示范工程风电场实际运行数据验证组合模型的有效性。结果表明,相较于其他4种单一预测模型,组合模型具有更高的预测精度。

关 键 词:LSTM模型  XGboost模型  组合模型  风电功率预测  数值天气预报信息
收稿时间:2021-07-21
修稿时间:2022-02-28

An ultra-short-term wind power prediction method based on LSTM-XGboost combination
Wang Yuxuan,Liang Qinwen,Zhang Siyuan,Liu Erji,Huang Yongzhang. An ultra-short-term wind power prediction method based on LSTM-XGboost combination[J]. Science Technology and Engineering, 2022, 22(14): 5629-5635
Authors:Wang Yuxuan  Liang Qinwen  Zhang Siyuan  Liu Erji  Huang Yongzhang
Affiliation:School of Electrical and Electronic Engineering,North China Electric Power University
Abstract:Affected by numerical weather prediction, wind power changes have strong stochastic volatility, and the accuracy of traditional single prediction model is low, which is difficult to meet the realistic forecasting demand. To this end, a ultra-short-term wind power prediction method based on the LSTM-XGboost combination is proposed. First, based on the meteorological data collected from wind farms, the Pearson correlation coefficient method is used to screen the meteorological data with strong correlation with wind power and establish the wind power prediction model dataset; then, the normalized dataset is used as the model input of LSTM and XGboost, and the ultra-short-term wind power prediction models of LSTM and XGboost are constructed respectively. Finally, the effectiveness of the combined model is verified by the actual operation data of a demonstration wind farm in Zhangjiakou. The results show that the combined model has higher prediction accuracy compared with the other four single prediction models.
Keywords:LSTM   XGboost   combination model   wind power forecast   numerical weather prediction
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号