首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量化深度学习模型的安全帽检测方法
作者姓名:秦子豪  雷鸣  宋文广  张维
作者单位:长江大学城市建设学院;长江大学计算机科学学院
基金项目:湖北省教育厅省级教研项目(2018284);
摘    要:基于对施工现场管理中安全帽检测重要性的认识,同时考虑工程项目中硬件设施的成本控制等现实问题,提出了一种基于深度学习网络Tiny-YOLO v3的轻量化改进版本LT-YOLO的安全帽检测技术方法。LT-YOLO增加了网络的输出层,并包含一种创新的R-DSC特征提取模块,该模块能够在不改变网络输入与输出大小的前提下,极大地降低模型的复杂度。实验结果表明,LT-YOLO在轻量化效果与检测性能之间取得了优良的平衡,在3.5 M参数量的基础上达到了59.3 mAP(mean average precision)和59.4%Recall。因此LT-YOLO拥有极低的参数量和计算量,对高算力硬件的依赖性低,适用于实际工程管理应用的施工现场安全管理,能够极大地降低企业成本,提升施工安全管理的水平。

关 键 词:施工现场管理  安全帽检测  深度学习  轻量化  工程管理
收稿时间:2021-08-08
修稿时间:2022-03-01
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号