首页 | 本学科首页   官方微博 | 高级检索  
     

基于图Transformer网络的城市路网短时交通流预测模型
作者姓名:周烽  王世璞  张坤鹏
作者单位:河南工业大学
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间路网结构图,本文将带有边的图同构网络(graph isomorphism network with edges,GINE)和Transformer网络相结合,对交通状态在路网层面的时空相关性进行建模,从而实现城市路网短时交通流预测。具体来说,Graformer模型首先利用长短期记忆网络(long short-term memory,LSTM)对交通数据的时序信息进行预处理,接着采用基于GINE与Transformer的全局注意力机制提取交通数据的空间特征,最后实现路网各路段交通流的同步预测。通过使用PeMS数据集进行实验验证,结果表明提出的Graformer模型在各项性能指标上均优于对比模型,证明了其作为一种可靠且高效的路网短时交通流预测方法的有效性。

关 键 词:短时交通流量预测   图同构网络   Transformer   时空相关性
收稿时间:2023-05-26
修稿时间:2024-01-12
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号