摘 要: | 针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间路网结构图,本文将带有边的图同构网络(graph isomorphism network with edges,GINE)和Transformer网络相结合,对交通状态在路网层面的时空相关性进行建模,从而实现城市路网短时交通流预测。具体来说,Graformer模型首先利用长短期记忆网络(long short-term memory,LSTM)对交通数据的时序信息进行预处理,接着采用基于GINE与Transformer的全局注意力机制提取交通数据的空间特征,最后实现路网各路段交通流的同步预测。通过使用PeMS数据集进行实验验证,结果表明提出的Graformer模型在各项性能指标上均优于对比模型,证明了其作为一种可靠且高效的路网短时交通流预测方法的有效性。
|