首页 | 本学科首页   官方微博 | 高级检索  
     

各向异性材料中反平面剪切型裂纹对应力波散射的非局部理论解
引用本文:张瑞玲,陈彩虹,皇甫昱. 各向异性材料中反平面剪切型裂纹对应力波散射的非局部理论解[J]. 河南大学学报(自然科学版), 2007, 37(4): 429-433
作者姓名:张瑞玲  陈彩虹  皇甫昱
作者单位:商丘职业技术学院,河南,商丘,476100;中原工学院,服装与艺术学院,郑州,450007
摘    要:利用非局部理论求解了各向异性材料中反平面剪切型裂纹对应力波散射的问题.利用富立叶变换,使问题的求解转换为对一对以裂纹面上位移分布为变量的对偶积分方程的求解;为了求解对偶积分方程,裂纹面上的位移直接展开成雅可比多项式形式.与经典理论的解相比,裂纹尖端处不再有应力奇异性出现,非局部弹性解的应力在裂纹尖端处是一有限值,从而可以利用最大应力假设作为断裂准则.

关 键 词:裂纹  非局部理论  各向异性材料  简谐波
文章编号:1003-4978(2007)04-0429-05
修稿时间:2007-02-25

Non-Local Theory Solution of the Stress Wave Scattering by a Crack in Anisotropic Materials
ZHANG Rui-ling,CHEN Cai-hong,HUANG Pu-yu. Non-Local Theory Solution of the Stress Wave Scattering by a Crack in Anisotropic Materials[J]. Journal of Henan University(Natural Science), 2007, 37(4): 429-433
Authors:ZHANG Rui-ling  CHEN Cai-hong  HUANG Pu-yu
Abstract:The dynamic behavior of a crack in anisotropic elasticity materials subject to the harmonic anti-plane shear waves is investigated using the non-local theory.By the Fourier transform,the problem can be solved with the help of a pair of dual integral equations,in which the unknown variable is the displacement on crack surfaces.To solve the dual integral equations,the displacement on crack surfaces is expanded in a series of Jacobi polynomials.Unlike the classical elasticity solutions,it is found that no stress singularity is present near crack tips.The nonlocal elasticity solutions yield a finite hoop stress at the crack tip,thus allowing us to use the maximum stress as a fracture criterion.
Keywords:crack  nonlocal theory  anisotropic material  harmonic wave
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号