摘 要: | 为了提高赤足足迹人身识别算法的准确率,本文提出了一种基于深度学习的足迹识别算法。由于足底各区域压力的不同导致了赤足足迹各部分包含的信息量存在一定的差异性,为了获取更稳定、区分度更高的特征,采用ResNet50作为基础网络,在特征层进行分块处理。本文基于2000人的赤足足迹库进行训练,利用500人1000幅测试图在3000人的赤足测试库上进行测试。所提出算法的首位识别准确率达到了98.50%,优于常规的ResNet50网络。实验证明,本文提出的基于特征分块的足迹识别算法在赤足足迹识别中获得了很好的识别效果。
|