首页 | 本学科首页   官方微博 | 高级检索  
     

一种全局优化的两阶段算法
引用本文:张玉芬,王永军. 一种全局优化的两阶段算法[J]. 河北大学学报(自然科学版), 2012, 32(2): 207-211
作者姓名:张玉芬  王永军
作者单位:1. 河北大学数学与计算机学院,河北保定,071002
2. 东方地球物理公司研究院数据处理中心,河北涿州,072751
基金项目:河北省软科学研究计划项目,河北省自然科学基金资助项目
摘    要:为了提高算法的有效性,利用梯度算法和粒子群算法独立的运行机制,采用驱赶技术和重新初始化部分群体的技术,提出了一种基于梯度下降法和粒子群算法的两阶段优化算法,并对新算法进行了理论分析和数值仿真.数值结果显示新算法比单纯梯度算法有更好的全局优化能力,比单纯粒子群算法有更快的收敛速度和更高的精度.新算法求解质量更高,运行更稳定.

关 键 词:全局优化  两阶段算法  梯度算法  粒子群算法

A two-phase algorithm for global optimization
ZHANG Yu-fen , WANG Yong-jun. A two-phase algorithm for global optimization[J]. Journal of Hebei University (Natural Science Edition), 2012, 32(2): 207-211
Authors:ZHANG Yu-fen    WANG Yong-jun
Affiliation:1.College of Mathematics and Computer Science,Hebei University,Baoding 071002,China; 2.Date Processing Center,Geophysical Prospecting Research Institute,Zhuozhou 072751,China)
Abstract:To enhance effectiveness of algorithm,on the basis of analyzing the independent operating mechanism of both gradient algorithm and particle swarm algorithm,a two-phase optimization algorithm based on gradient descent and particle swarm algorithm is presented;it adopts the driving technique and the re-initialization technique of part of population.Then,the theoretical analysis and numerical simulation about the new algorithm are made.The numerical simulation shows this new algorithm has better global optimization ability than the gradient algorithm,and it has faster convergences speed and lighter solution accuracy than particle swarm algorithm.This new algorithm produces a lighter quality solution and has more stable operation.
Keywords:global optimization  two-phase algorithm  gradient algorithm  particle swarm optimization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号