摘 要: | 为了解决复杂工业过程中变量多,难以判断引起故障的主要异常变量的问题,提出一种基于ICA-PCA(独立成分分析和主成分分析)算法和Lasso(最小绝对收缩和选择算子)回归算法的过程故障检测与诊断的集成模型.首先,建立ICA-PCA模型提取数据的高斯信号和非高斯信号,构造相关统计量实现在线故障检测;然后,基于ICA-PCA模型获得的过程状态及故障信息,进一步构造基于Lasso回归算法的故障诊断模型,实现故障发生时的主要异常变量的定位和选择;最后,利用Matlab进行了TE(田纳西-伊斯曼)过程的数值仿真实验,并与已有故障诊断方法分布式PCA贡献图法进行比较,结果表明所提出的方法是有效的.
|