摘 要: | 带隙是钙钛矿型复合氧化物材料重要的特征参数,对材料的物理化学性质起决定性作用,如导电性能和光电性能等.为了寻找适合不同应用领域的钙钛矿型材料,利用机器学习进行带隙预测是一种重要的研究手段.构建了一个两阶段异质集成学习模型,在第一阶段使用多种不同的基础机器学习器(回归模型)进行预测;在第二阶段把对预测结果影响较大的描述子和基础机器学习器进行集成学习.利用该模型对210种钙钛矿型复合氧化物材料的带隙进行预测,并与多种独立的机器学习算法以及不同集成策略模型的预测性能相对比,评估了本模型的预测性能.结果表明,这种两段式的集成学习模型能够更好地学习到材料数据的内在关系,并具有较好的预测效果和较强的泛化能力.
|