首页 | 本学科首页   官方微博 | 高级检索  
     

B-Valued Dyadic Derivative
引用本文:ZHANG Chuanzhou CHEN Lihong,LIU Peide. B-Valued Dyadic Derivative[J]. 武汉大学学报:自然科学英文版, 2007, 12(6): 961-964. DOI: 10.1007/s11859-007-0050-8
作者姓名:ZHANG Chuanzhou CHEN Lihong  LIU Peide
作者单位:School of Mathematics and Statistics, Wuhan University,Wuhan 430072, Hubei, China
基金项目:Supported by the National Natural Science Foundation of China( 10671147)
摘    要:
The principles of the new maximal operator H* we defined are discussed. We prove that it is bounded from martingale Hardy-Lorentz L^Xp.q[0,1) to the Lorentz L^Xp.q[0,1) for 1/2〈 p〈∞, 0〈~ q ≤ ∞, where X is any Banach space. When the Banach space X has the RN property, the sequence dnHnf converges to f a.e. Meanwhile the convergence in L^Xp norm for 1≤p〈∞ is a consequence of that the family functions K (n∈N) is an approximate identity.

关 键 词:  并向量  二价积分  数学分析
文章编号:1007-1202(2007)06-0961-04
收稿时间:2007-03-18
修稿时间:2007-03-18

B-valued dyadic derivative
Zhang Chuanzhou,Chen Lihong,Liu Peide. B-valued dyadic derivative[J]. Wuhan University Journal of Natural Sciences, 2007, 12(6): 961-964. DOI: 10.1007/s11859-007-0050-8
Authors:Zhang Chuanzhou  Chen Lihong  Liu Peide
Affiliation:(1) School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, Hubei, China
Abstract:
The principles of the new maximal operator H* we defined are discussed. We prove that it is bounded from martingale Hardy-Lorentz H p,q X [0,1) to the Lorentz L p,q X [0,1) for 1/2 < p<∞, 0<q⩽∞, where X is any Banach space. When the Banach space X has the RN property, the sequence d n H n f converges to f a.e. Meanwhile the convergence in L p X norm for 1⩽p<∞ is a consequence of that the family functions K n(n∈N) is an approximate identity. Biography: ZHANG Chuanzhou(1978–), male, Ph.D. candidate, research direction: Banach space geometry and martingale theory.
Keywords:martingale Hardy space   dyadic derivative   dyadic integral
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号