首页 | 本学科首页   官方微博 | 高级检索  
     

城市交通系统降维状态判别规则
引用本文:翁小雄,翁丹,叶丽萍. 城市交通系统降维状态判别规则[J]. 华南理工大学学报(自然科学版), 2008, 36(2): 17-22
作者姓名:翁小雄  翁丹  叶丽萍
作者单位:华南理工大学,交通学院,广东广州510640
基金项目:国家自然科学基金 , 广东省科技厅科技计划
摘    要:城市交通流是一个复杂多变、非线性、非结构化、时空变化的随机大系统。目前常用的固定阈值评价方法无法全面判别交通系统运行状态。随着我国智能交通系统的建设规模不断扩大,急需寻找一种适合我国城市交通流混合现象严重的、符合交通流运动机理的交通状态判别模型。本文在研究混合交通流的多维交通状态变量的基础上,利用粗糙集理论,建立四维状态判别模型,通过数据离散和属性约简得到二维决策表,提出一种城市交通系统降维状态判别规则,并以实例说明其能够有效剔除系统冗余信息,提高挖掘规则的精度。

关 键 词:城市交通系统  交通流  粗糙集  属性约简  判别规则  
文章编号:1000-565X(2008)02-0017-06
收稿时间:2007-01-22
修稿时间:2007-01-22

Rules on Dimension-Reduced State Estimation in Urban Traffic System
Weng Xiao-xiong,Weng Dan,Ye Li-ping. Rules on Dimension-Reduced State Estimation in Urban Traffic System[J]. Journal of South China University of Technology(Natural Science Edition), 2008, 36(2): 17-22
Authors:Weng Xiao-xiong  Weng Dan  Ye Li-ping
Abstract:Traffic flow is a complex, changeful, nonlinear, unstructured, space time-varying and random system. At present, the traffic movement condition on road can’t be estimated effectively by using the common fixed threshold value estimation methods. With the foundation and operating of the Intelligent Traffic System, it’s imperative to search for one traffic state estimation model, which is suitable for mixed-traffic in China and according with movement mechanism of traffic flow. On the basic of analysis of the multidimensional state characteristics of mixed-traffic, using the Rough Set Theory, the four-dimensional state estimation model is founded. By data discretization and attribute reduction, the two-dimensional decision table is gained, and the rules of multidimensional state estimation in urban traffic system are presented. A case is given and it indicates that this method can eliminate the redundancy information of the system effectively and improve the precision of rule mining.
Keywords:urban traffic system  traffic flow  rough set  attribute reduction  estimation rule
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《华南理工大学学报(自然科学版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号