首页 | 本学科首页   官方微博 | 高级检索  
     

p-Laplacian方程组大解的存在性
引用本文:印凡成,王滕滕,黄健元. p-Laplacian方程组大解的存在性[J]. 中山大学学报(自然科学版), 2012, 51(4): 45-49
作者姓名:印凡成  王滕滕  黄健元
作者单位:1. 河海大学理学院,江苏南京,210098
2. 河海大学公共管理学院,江苏南京,210098
基金项目:中央高校基本科研业务费重点资助项目
摘    要: 为了研究强耦合项的非线性椭圆型p-Laplacian方程组大解的存在性问题,文章运用上下解方法,主要讨论R N上一类椭圆型方程组大解的存在性及需要满足的条件。关键在于通过一组不等式的可解性,寻求可解的条件,从而得到方程组大解存在需要满足的条件,即(a-p+1)(e-q+1)
关 键 词:非线性椭圆型p-Laplacian方程组  比较原理  上下解  大解
收稿时间:2011-09-24;

Existence of Large Solutions of the Quasilinear Elliptic p-Laplacian System
YIN Fancheng , WANG Tengteng , HUANG Jianyuan. Existence of Large Solutions of the Quasilinear Elliptic p-Laplacian System[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(4): 45-49
Authors:YIN Fancheng    WANG Tengteng    HUANG Jianyuan
Affiliation:1.School of Science,Hohai university,Nanjing 210098,China; 2.School of Public Administration,Hohai university,Nanjing 210098,China)
Abstract:The sub-super solution method is used to research the existence of large solutions of the quasilinear elliptic p-Laplacian system which is exponential.The existence and sufficient conditions of large solutions of the quasilinear elliptic p-Laplacian system are discussed.The key point is to establish a set of inequalities which have solutions to get the sufficient conditions.The sufficient condition of the quasilinear elliptic p-Laplacian system is obtanined,which is(a-p+1)(e-q+1)
Keywords:quasilinear elliptic p-Laplacian system  weak comparison principle  sub-super solutions  large solutions
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中山大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号