首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
不满足A-R条件的双调和方程无穷多解的存在性
作者姓名:
谢 华 朝
作者单位:
河南财经政法大学 数学与信息科学学院, 郑州
基金项目:
国家自然科学基金项目(11326136);河南省自然科学基金项目(14B110033)
摘 要:
在有界光滑区域 Ω?RN(N>4)上, 研究了双调和方程Δ2u-λu=f(x,u),x∈Ω;u=?u/?n=0,x∈?Ω,其中,f(x,u)是关于u的奇函数,u趋于无穷时是次临界的,并且不满足A-R条件.利用对称的山路引理,证明上面的方程有无穷多解且相应的临界值序列趋于正无穷大.
关 键 词:
双调和方程
无穷多解
A-R条件
本文献已被
CNKI
等数据库收录!
点击此处可从《华中师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华中师范大学学报(自然科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号