首页 | 本学科首页   官方微博 | 高级检索  
     

多分类问题的RBF 二叉神经树网络方法
作者姓名:岳喜才  叶大田  管桦
作者单位:清华大学,电机系,北京,100084;空军工程大学,科研部,陕西,西安,710068
摘    要:神经网络是一种普遍使用的分类方法。当类别数目较大时 ,神经网络结构复杂、训练时间激增、分类性能下降。基于两类问题的树网络多分类方法将两分类方法和判决树相结合 ,利用两分类方法来减少神经网络的训练时间 ,利用树型分类器来提高识别率。提出了一种多分类问题的二叉神经树网络结构和训练算法。利用两分类网络的训练结果对类别进行排序处理 ,并应用排序后的类别序号构成树型分类器 ,使可分性最差的类别的识别率提高最大 ,从而提高了整体分类性能。使用径向基函数 ( RBF)网络作为节点网络 ,使节点网络结构适应两类间的可分性 ,从而最终优化了神经树网络的结构。仿真实验表明该方法的分类性能优于现有方法

关 键 词:径向基函数网络  模式识别
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号