多分类问题的RBF 二叉神经树网络方法 |
| |
作者姓名: | 岳喜才 叶大田 管桦 |
| |
作者单位: | 清华大学,电机系,北京,100084;空军工程大学,科研部,陕西,西安,710068 |
| |
摘 要: | 神经网络是一种普遍使用的分类方法。当类别数目较大时 ,神经网络结构复杂、训练时间激增、分类性能下降。基于两类问题的树网络多分类方法将两分类方法和判决树相结合 ,利用两分类方法来减少神经网络的训练时间 ,利用树型分类器来提高识别率。提出了一种多分类问题的二叉神经树网络结构和训练算法。利用两分类网络的训练结果对类别进行排序处理 ,并应用排序后的类别序号构成树型分类器 ,使可分性最差的类别的识别率提高最大 ,从而提高了整体分类性能。使用径向基函数 ( RBF)网络作为节点网络 ,使节点网络结构适应两类间的可分性 ,从而最终优化了神经树网络的结构。仿真实验表明该方法的分类性能优于现有方法
|
关 键 词: | 径向基函数网络 模式识别 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文 |
|