首页 | 本学科首页   官方微博 | 高级检索  
     

随机变时滞递归神经网络的几乎指数稳定性
引用本文:刘岩,孙多青,张力超,肖淬艺. 随机变时滞递归神经网络的几乎指数稳定性[J]. 河北科技师范学院学报, 2009, 23(3): 40-43
作者姓名:刘岩  孙多青  张力超  肖淬艺
作者单位:河北科技师范学院,数理系,066004,河北,秦皇岛;河北科技师范学院,数学与系统科学研究所;燕山大学,里仁学院,基础教学部
基金项目:国家自然科学基金资助项目 
摘    要:研究了一类随机变时滞递归神经网络的几乎指数稳定性问题。利用Lyapunov函数方法和Ito公式,结合矩阵分析技巧,给出了系统几乎指数稳定的判别准则。数值例子说明了该结果的有效性。

关 键 词:递归神经网络  变时滞  几乎指数稳定性

Almost Surely Exponential Stability of Stochastic Recurrent Neural Networks with Time-varying Delays
LIU Yan,SUN Duo-qing,ZHANG Li-chao,XIAO Cui-yi. Almost Surely Exponential Stability of Stochastic Recurrent Neural Networks with Time-varying Delays[J]. Journal of Hebei Normal University of Science & Technology, 2009, 23(3): 40-43
Authors:LIU Yan  SUN Duo-qing  ZHANG Li-chao  XIAO Cui-yi
Affiliation:LIU Yan , SUN Duo-qing , ZHANG Li-chao, XIAO Cui-yi (1 Dept of Mathematics and Physics,Hebei Normal University of Science & Technology, Qinhuangdao Hebei,066004 ; 2 Institute of Mathematics and Systems Science, Hebei Normal University of Science & Technology;3 Foundational Department, Liren College, Yanshan University; China)
Abstract:The almost surely exponential stability of stochastic recurrent neural networks with time-varying delays is investigated. By using Lyapunov function and It o formula, combining some matrix analytical techniques,some new criteria on almost surely exponential stability are obtained. A numerical example is given to demonstrate the effectiveness of the results.
Keywords:recurrent neural networks  time-varying delays  almost surely exponential stability
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号