首页 | 本学科首页   官方微博 | 高级检索  
     

基于NSCT与压缩感知的红外影像融合
引用本文:金安安,李祥,张丽,熊卿智. 基于NSCT与压缩感知的红外影像融合[J]. 应用科学学报, 2022, 40(1): 80-92. DOI: 10.3969/j.issn.0255-8297.2022.01.008
作者姓名:金安安  李祥  张丽  熊卿智
作者单位:1. 东华理工大学 信息工程学院, 江西 南昌 330013;2. 东华理工大学 江西省核地学数据科学与系统工程技术研究中心, 江西 南昌 330013
基金项目:国家自然科学基金(No.41862012);
摘    要:
针对红外和可见光图像在融合过程中存在质量低下、信息缺失、边缘细节不突出等问题,提出一种基于非下采样轮廓波变换(non-subsampled contourlet transform,NSCT)与稀疏表示的压缩感知图像融合重构算法.首先利用NSCT进行源图像分解,得到相应的高频子带和低频子带图像;然后针对高频子带部分,利...

关 键 词:图像融合  非下采样轮廓波变换  稀疏表示  压缩感知  红外影像
收稿时间:2021-07-12

Infrared Image Fusion Based on NSCT and Compressed Sensing
JIN An'an,LI Xiang,ZHANG Li,XIONG Qingzhi. Infrared Image Fusion Based on NSCT and Compressed Sensing[J]. Journal of Applied Sciences, 2022, 40(1): 80-92. DOI: 10.3969/j.issn.0255-8297.2022.01.008
Authors:JIN An'an  LI Xiang  ZHANG Li  XIONG Qingzhi
Affiliation:1. School of Information Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China;2. Jiangxi Engineering Technology Research Center of Nuclear Geoscience Data Science and System, East China University of Technology, Nanchang 330013, Jiangxi, China
Abstract:
Aiming at the problems of low quality, lack of information and non-prominent edge details in the fusion process of infrared and visible images, this paper proposes a compressed sensing image fusion and reconstruction algorithm based on non-subsampled contourlet transform (NSCT) and sparse representation. Firstly, a source image is decomposed by using NSCT to obtain corresponding high-frequency sub-band and low-frequency sub-band images. Then, the high-frequency sub-band images are fused by using the highfrequency fusion rules based on compressed sensing to obtain high-frequency fusion coefficients. For the low-frequency sub-band images, low-frequency fusion coefficients are obtained by using the low-frequency fusion rules based on dictionary learning. Finally, a fusion image is obtained by using the inverse NSCT transformation to achieve superresolution recovery of infrared and visible images. Experimental results show that the images fused by this algorithm have good performance in metrics, such as average gradient, edge intensity, information entropy, edge information retention and spatial frequency, and prove that this fusion algorithm has significant advantages in image fusion quality.
Keywords:image fusion  non-subsampled contour transform (NSCT)  sparse representation  compressed sensing (CS)  infrared image  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号