首页 | 本学科首页   官方微博 | 高级检索  
     

基于多层概率集的随机系统预测控制
引用本文:梁华清,张冬雯,邢少光,张沙沙. 基于多层概率集的随机系统预测控制[J]. 河北科技大学学报, 2016, 37(2): 205-212
作者姓名:梁华清  张冬雯  邢少光  张沙沙
作者单位:;1.河北科技大学电气工程学院;2.河北科技大学信息科学与工程学院
基金项目:河北省自然科学基金(F2014208169)
摘    要:针对具有Markov跳变特点的一类离散随机系统,研究了输入量概率约束下的状态反馈预测控制问题。采用多层概率集的概念和方法,给出了具有多个不同概率软约束下的预测控制器设计算法,在多步反馈律的控制下,系统状态以指定概率进入不同的椭圆内,保证了系统的稳定性,而且扩大了控制问题的可行范围,改善了系统性能。最后仿真实例证明了所提方法的有效性。

关 键 词:随机过程  预测控制  Markov跳变  概率约束  多层概率集
收稿时间:2015-09-29
修稿时间:2015-12-18

Predictive control for stochastic systems based on multi-layer probabilistic sets
LIANG Huaqing,ZHANG Dongwen,XING Shaoguang and ZHANG Shasha. Predictive control for stochastic systems based on multi-layer probabilistic sets[J]. Journal of Hebei University of Science and Technology, 2016, 37(2): 205-212
Authors:LIANG Huaqing  ZHANG Dongwen  XING Shaoguang  ZHANG Shasha
Abstract:Aiming at a class of discrete-time stochastic systems with Markov jump features, the state-feedback predictive control problem under probabilistic constraints of input variables is researched. On the basis of the concept and method of the multi-layer probabilistic sets, the predictive controller design algorithm with the soft constraints of different probabilities is presented. Under the control of the multi-step feedback laws, the system state moves to different ellipses with specified probabilities. The stability of the system is guaranteed, the feasible region of the control problem is enlarged, and the system performance is improved. Finally, a simulation example is given to prove the effectiveness of the proposed method.
Keywords:stochastic process   predictive control   Markov jump   probabilistic constraints   multi-layer probabilistic sets
本文献已被 CNKI 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号