首页 | 本学科首页   官方微博 | 高级检索  
     

文本处理中基于随机映射的加速LSI方法
引用本文:钱晓东 王正欧. 文本处理中基于随机映射的加速LSI方法[J]. 天津大学学报(自然科学与工程技术版), 2005, 38(4): 372-376
作者姓名:钱晓东 王正欧
作者单位:天津大学系统工程研究所,天津300072
基金项目:国家自然科学基金资助项目(60275020)
摘    要:首先针对在文本处理的高维矢量环境中Kohonen自组织映射神经网络的计算瓶颈问题和输入矢量空间中存在的问题进行分析,然后对随机映射(RM)和隐含语义索引(LSI)方法分别进行理论分析,提出用于文本处理的基于随机映射的加速LSI方法.试验结果表明,加速LSI方法可以在凸现原有语义联系的基础上,低代价、有效、可控地解决上述问题,极大地降低文本处理环境中Kohonen自组织神经网络的规模和计算代价.

关 键 词:文本处理 隐含语义索引 自组织神经网络 随机映射
文章编号:0493-2137(2005)04-0372-05
修稿时间:2003-11-03

Fast Latent Semantic Indexing in Text Processing Based on Random Mapping
QIAN Xiao-dong,WANG Zheng-ou. Fast Latent Semantic Indexing in Text Processing Based on Random Mapping[J]. Journal of Tianjin University(Science and Technology), 2005, 38(4): 372-376
Authors:QIAN Xiao-dong  WANG Zheng-ou
Abstract:The bottleneck problems of calculation in Kohonen self-organizing map neural network and problems of input vector spaces in the high-dimensional vector environment of text processing are analyzed first, and then on the basis of the theoretic analysis of random mapping (RM) and latent semantic indexing (LSI) method respectively, an RM-based fast latent semantic indexing method that is used in text processing is put forward. The experimental results show the fast LSI method based on original semantic links can solve the above-mentioned problems in a low-cost, efficient and controllable way. As a result, it greatly reduces the size and the computational cost of Kohonen neural network in text processing environment.
Keywords:text processing  latent semantic indexing(LSI)  self-organizing neural network  random mapping(RM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号