首页 | 本学科首页   官方微博 | 高级检索  
     

K-vertex-connectivity minimum augmentation for undirected unweighted graphs
引用本文:CAO Qiguo,WU Xue,SUN Yugeng. K-vertex-connectivity minimum augmentation for undirected unweighted graphs[J]. 自然科学进展(英文版), 2003, 13(6): 434-445
作者姓名:CAO Qiguo  WU Xue  SUN Yugeng
作者单位:School of Electrical Automation and Energy Engineering, Tianjin University, Tianjin 300072, China,School of Electrical Automation and Energy Engineering, Tianjin University, Tianjin 300072, China,School of Electrical Automation and Energy Engineering, Tianjin University, Tianjin 300072, China
基金项目:Supported by the Education Ministry Doctoral Discipline Foundation of China (Grant No. 2000005634)
摘    要:
For an undirected unweighted graph G0=(V0,E0) and a positive integer K, the K-vertex-connectivity minimum augmentation problem (K-VCMAP) is to find a minimum set of edges Emin such that the graph H0=(V0,E0∪Emin) is K-vertex-connected. Results in the literature have given polynomial time algorithms for K-VCMAP in several special cases such as where k≤3, or G0 is a tree. However, it still remains open whether or not there exist polynomial time algorithms for K-VCMAP for any graph G0 and any integer K. In this paper, we settle the problem by describing an efficient algorithm (KUCA) with time-complexity of O(K|V(G0)|5) for the K-VCMAP for any G0 and any positive integer K.

关 键 词:K-vertex-connectivity   minimum extended augmentation   admissible lifting   KR-arc-connected graphs   f

K-vertex-connectivity minimum augmentation for undirected unweighted graphs
CAO Qiguo,WU Xue,Sun Yugeng. K-vertex-connectivity minimum augmentation for undirected unweighted graphs[J]. Progress in Natural Science, 2003, 13(6): 434-445
Authors:CAO Qiguo  WU Xue  Sun Yugeng
Affiliation:School of Electrical Automation and Energy Engineering, Tianjin University, Tianjin 300072, China
Abstract:
For an undirected unweighted graph G0=(V0,E0) and a positive integer K, the K-vertex-connectivity minimum augmentation problem (K-VCMAP) is to find a minimum set of edges Emin such that the graph H0=(V0,E0∪Emin) is K-vertex-connected. Results in the literature have given polynomial time algorithms for K-VCMAP in several special cases such as where k≤3, or G0 is a tree. However, it still remains open whether or not there exist polynomial time algorithms for K-VCMAP for any graph G0 and any integer K. In this paper, we settle the problem by describing an efficient algorithm (KUCA) with time-complexity of O(K|V(G0)|5) for the K-VCMAP for any G0 and any positive integer K.
Keywords:K-vertex-connectivity   minimum extended augmentation   admissible lifting   KR-arc-connected graphs   f
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号