首页 | 本学科首页   官方微博 | 高级检索  
     

一类具有偏差变元的二阶泛函微分方程周期解
引用本文:佘志炜,王全义. 一类具有偏差变元的二阶泛函微分方程周期解[J]. 华侨大学学报(自然科学版), 2009, 30(6)
作者姓名:佘志炜  王全义
作者单位:华侨大学,数学科学学院,福建,泉州,362021
基金项目:福建省自然科学基金资助项目(Z0511026)
摘    要:利用重合度理论,研究一类具有偏差变元的二阶微分方程x″+f(t,x′(t))+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.其中,f,g∈C(R×R,R),且对任意的x∈R,g(t+ω,x)=g(t,x),p∈C(R,R),τ∈C(R,R)是ω-周期的.在不要求对所有的y∈R,函数f(t,y)≤0(f(t,y)≥0),t∈R的情况下,得到该类方程至少存在一个ω-周期解的充分条件.

关 键 词:泛函微分方程  周期解  重合度  偏差变元  

Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument
SHE Zhi-wei,WANG Quan-yi. Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument[J]. Journal of Huaqiao University(Natural Science), 2009, 30(6)
Authors:SHE Zhi-wei  WANG Quan-yi
Affiliation:School of Mathematical Sciences;Huaqiao University;Quanzhou 362021;China
Abstract:In this paper,by means of Mawhin's continuation theorem,we study the problem on the existence of periodic solutions for the second order differential equations with a deviating argument x″+f(t,x′(t))+g(t,x(t-τ(t)))=p(t),where f,g∈C(R×R,R),and for any x∈R,g(t+ω,x)=g(t,x),p∈C(R,R);and τ∈C(R,R) arecω-periodic.Without the condition f(t,y)≤0(f(t,y)≥0) for all y∈R and t∈R,we obtain some sufficient conditions on the existence of at least one periodic solution for this equation.
Keywords:functional differential equation  periodic solution  coincidence degree  deviating argument  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号