首页 | 本学科首页   官方微博 | 高级检索  
     

基于非参数回归的遗传神经网络集成股市预测研究
引用本文:汪灵枝. 基于非参数回归的遗传神经网络集成股市预测研究[J]. 玉林师范学院学报, 2010, 31(5): 38-42
作者姓名:汪灵枝
作者单位:柳州师范高等专科学校数计系副教授,广西柳州545003
基金项目:广西教育厅面上项目,广西青年科学基金
摘    要:利用遗传算法改进神经网络集成个体的连接结构和初始连接权值,利用主成分分析法提高集成个体差异度,形成一组优良的神经网络集成个体,利用非参数回归生成集成结论,求出非线性时序函数的全局最优解,随即建立新型的基于非参数回归的遗传神经网络集成股市预测模型.仿真结果表明,该模型预测精度高,可操作性强,具有一定实用性.

关 键 词:遗传算法  神经网络集成  非参数回归  预测

Stock Market Forecasting Model Based on Nonparametric Regression Evolving Genetic Algorithm Neural Network Ensembles
Wang Ling-zhi. Stock Market Forecasting Model Based on Nonparametric Regression Evolving Genetic Algorithm Neural Network Ensembles[J]. Journal of Yulin Teachers College, 2010, 31(5): 38-42
Authors:Wang Ling-zhi
Affiliation:Wang Ling-zhi(Associate Professor,Dept. of Mathematics & Computer Science,Liuzhou Teachers College,Liuzhou,Guangxi 545004)
Abstract:The connection architecture of network and the connection weights of network are optimized by the implementation of genetic algorithms operation.The best individual neural network could be generated by the principal component analysis(PCA) technology.The ensemble strategy is carried out by nonparametric regression.The global optimal solution of nonlinear time series function was obtained.The novel non-parametric regression(NR) based on genetic neural network ensemble was established for the forecasting model of the stock market.Stimulation testing revealed that the NR ensemble model proposed could be used as an alternative forecasting tool for a meteorological application in achieving greater forecasting accuracy and improving prediction quality.
Keywords:genetic algorithms  neural network ensemble  non-parametric regression  forecasting
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号