首页 | 本学科首页   官方微博 | 高级检索  
     

基于双向LSTM的手写文字识别技术研究
摘    要:手写文字识别是计算机视觉、自然语言处理领域中的重要问题和研究热点.本文针对手写文字识别问题,提出一种基于双向LSTM网络的手写文字识别方法.首先根据数据集特点进行归一化等预处理;然后使用CNN网络对图像的特征进行提取;接着通过双向LSTM网络来记忆手写文字序列的字句关系,并对文字序列进行预测;最后使用CTC-Loss作为损失函数,可以让整句标注的训练集在上述网络下收敛.对比实验表明本文提出的算法模型的有效性.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号