首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析和支持向量机的鲁棒稀疏线性判别分析方法
引用本文:鞠厦轶,吕开云,龚循强,鲁铁定. 基于主成分分析和支持向量机的鲁棒稀疏线性判别分析方法[J]. 科学技术与工程, 2022, 22(26): 11515-11523
作者姓名:鞠厦轶  吕开云  龚循强  鲁铁定
作者单位:东华理工大学测绘工程学院
基金项目:国家自然科学基金(42101457、42061077);江西省教育厅科学技术科技(GJJ150591);东华理工大学放射性地质与勘探技术国防重点学科实验室开放基金(REGT1219)
摘    要:为了提高人脸图像的识别率、识别效率和鲁棒性,提出一种基于主成分分析(Principal Component Analysis, PCA)和支持向量机(support Vector machine,SVM)的鲁棒稀疏线性判别分析方法,通过ORL和YaleB人脸库、COIL20物体库和UCI机器学习库中部分数据集,将本文方法与线性判别分析、鲁棒线性判别分析、基于 范数和巴氏距离的鲁棒线性判别分析、鲁棒自适应线性判别分析和鲁棒稀疏线性判别分析等六种方法进行比较。实验结果表明,在ORL人脸库、COIL20物体库和UCI机器学习库的部分数据集中,在原始图像条件下,本文方法的识别率均值依次为92.80%,97.76%和89.61%,均高于其它5种方法。在YaleB人脸库加入椒盐噪声的条件下,本文方法的识别率均值为81.35%,比其它五种方法高1.37%以上。

关 键 词:鲁棒稀疏线性判别分析   主成分分析   人脸识别   特征提取   支持向量机
收稿时间:2021-11-25
修稿时间:2022-06-30

robust sparse linear discriminant analysis method based on principal component analysis and support vector machine
Ju Xiayi,Lv Kaiyun,Gong Xunqiang,Lu Tieding. robust sparse linear discriminant analysis method based on principal component analysis and support vector machine[J]. Science Technology and Engineering, 2022, 22(26): 11515-11523
Authors:Ju Xiayi  Lv Kaiyun  Gong Xunqiang  Lu Tieding
Affiliation:Faculty of Geomatics East China University of Technology
Abstract:In order to improve the recognition rate, efficiency and robustness of face images, a robust sparse linear discriminant analysis method based on Principal Component Analysis (PCA) and support vector machine (SVM) is proposed. The proposed method is compared with linear discriminant analysis, robust linear discriminant analysis, robust linear discriminant analysis based on the Bhattacharyya error bound and -norm, robust adaptive linear discriminant analysis and robust sparse linear discriminant analysis through the ORL and YaleB database, COIL20 object database and some datasets in UCI machine learning database. The experimental results show that under the original image condition, the average recognition rate of this method is 92.80%, 97.76% and 89.61% on the ORL database, COIL20 object image database and some datasets in UCI machine learning database, which is higher than the other five methods. Under the condition of adding salt and pepper noise to the YaleB database, the average recognition rate of proposed method is 81.35%, which is more than 1.37% higher than the other five methods.
Keywords:robust sparse linear discriminant analysis   principal component analysis   face recognition feature extraction   support vector machine
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号